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Abstract

Numerical methods can be used to obtain the depen-
dence relations between components of an nth-rank
tensor for the particular symmetries of each crystal
class. The program has been used successfully to
calculate the fourth-order elastic coefficients, cor-
responding to a tensor of eighth rank for all crystal
classes and the isotropic case.

1. Introduction

Higher-order non-linear coefficients have an important
place in the behaviour of acoustical devices. In fact,
they induce the dependence between the velocity and
the amplitude of an elastic wave which causes
variations of the time delay and harmonic generation in
delay lines and filters. In resonators, they introduce an
amplitude—frequency effect as shown by Gagnepain &
Besson (1975). Also, the non-linear coefficients are
involved in the sensitivity of these devices when
subjected to external perturbations such as temperature
fluctuations, pressure, accelerations, vibrations, forces,
etc. These phenomena are the cause of instabilities in
devices which need to be stable (particularly in the case
of oscillators). Conversely, the non-linearities some-
times can be used, for instance for sensor applications.

The major part of these phenomena can be explained
in terms of third-order coefficients. However, the
increasing precision of measurement systems reveals
phenomena which can be justified only with the
introduction of fourth-order coefficients. Moreover, the
dependence between the amplitude and the velocity of
an elastic wave cannot be explained completely without
taking into account the fourth-order -coefficients
(Tiersten, 1974, 1975).

In order to obtain the equations describing the
behaviour of acoustical devices, it is necessary to know
the interdependence relations between non-linear
coefficients which are components of tensors, for
instance, the third- and fourth-order elastic coefficients
are components of sixth- and eighth-rank tensors
respectively.
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The interdependence relations depend on the par-
ticular symmetries of each crystal class (see for
example Nye, 1957). Zero coefficients, independent
coefficients and interdependence relations are well
known for tensors up to sixth rank. They are listed by
Thurston (1974) and Bechmann & Hearmon (1969).
Some particular cases of eighth-rank tensors were
studied by Krishnamurty (1963) and Markenscoff
(1976) but no systematic investigations have been
performed because of the very large number of
calculations required.

The method used here to obtain interdependence
relations between tensor components is based on the
fundamental transformation law for tensors; the tensor
components must be unchanged when the transform-
ation corresponds to a symmetry of the crystal.

For instance, for a second rank tensor d;, this law is
written ¢ = a,q,0,, where the a;s represent the
matrix elements of a particular considered rotation; if
this rotation corresponds to a symmetry of the crystal,
the tensor o, remains unchanged and the transfor-
mation law becomes o; = a,a;0,,. When all the
equations are developed it appears they can be grouped
into systems which, when solved, give the inter-
dependence relations.

In the most general case this method needs 32" terms
for an nth-rank tensor, e.g. 81 for n = 2 but more than
500 000 for n = 6 and more than 4 x 107 for n = 8.
Although this method cannot be used manually, the
tensor formulation is particularly suitable for numerical
methods.

2, Crystal symmetries

Suppose that a particular physical property of a crystal
can be described by a tensor of nth rank (n = 8, for
example). In a transformation of axes, the components
of this tensor C ., become:

0]

Cr:mpqrstx = Qe Oy O Qap Ay s Ay Qxy CefghUkl
where a; is the transformation matrix.
If the transformation corresponds to a symmetry of
the crystal, relation (1) is an identity and we have:
Cr;mpqrstx = C
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Table 1. Symmetries of the different crystal classes

Fourth-order

Crystal independent Crystal classes
system Generators coefficients (point groups) Generators
(a) () (0) @ (@ )] @ (h)
Triclinic N I R! 126/1 { 1 C, R!
6/126 i c R
- 2 ¢, R
Monoclinic M I R? 70/70 2 C, —R?
2/m Cin —R', R?
222 D, R, R?
Orthorhombic 0 111 RLR? 42/42 { mm?2 C,. —R%, R?
mmm D,, —R', R%L, R?
4 C, R;
Tl IVa R 64/36 { 4 S, —R}
4/m Cun —R'\ R¢
Tetragonal
422 D, R%, R4
4mm C —R%L, R!
71 1VH R4 R? . v » R
» R 42/25 42m D, RyZR
4/mmm D,, —R,, R, R}
3
RII v s { 3 G R;
a R} 118/42 3 c, —R, R
Rhombohedral
(trigonal) 32 D, R, R}
RI Vb RYL R} 69/28 3m C,, —R%L, R}
Im Dy, —R'\,R%, R}
6 C, R}
HII Vla R¢ 64/24 6 Cy, —R®
6/m Cen ~R', RS
Hexagonal
622 D, R%, R®
6mm C ~R% RS
Vv 2 6 Z (12
Hl 15 R% RS 42/19 6m2 D Rﬁ,iRé
6/mmm Dy, —R', R%, R
{ 23 T RLR}
cl Vlila RLRLR} 42/14 m3 T, —R',R%R3
22 p
Cubic
(isometric) 432 o RLR;
Cl VIIb R4 RS RY 42/11 43m T, ~R%L R}
m3m 0, ~R'\ R, R}
Isotropic I All 42/4 All

(@) Usual name of the crystal system.

(b) Laue groups after Thurston (1974).

(¢) Laue groups after Bechmann & Hearmon (1969).

(d) Generators for even-rank tensors after Thurston (1974). R” means a rotation of 27/n about the z axis. p axis corresponds to the
direction (111).

(e) Number of non-zero coefficients and number of independent fourth-order coefficients.

(/) Hermann~Mauguin symbols for the point groups.

(g) Schoenflies symbols.

(h) Generators for odd-rank tensors after Birss (1963). —R! means the transformation matrix —5(,.
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Table 1 summarizes the symmetries corresponding
to the 11 Laue groups and to the 32 crystal classes.

3. Numerical method

3.1. Principle of the method

The best way of presenting the principle of the
numerical calculation is to give a typical example. In
the rhombohedral system class 3, a second-rank tensor
o, representing some physical property of the crystal
remains unchanged by a 27/3 rotation about the z axis.
In the tensor transformation law, the a,’s are the
elements of the matrix

!
1\/§W
-~ X2
2 2
3
VL
2 2
[0 0 1]

In such a case, the nine equations o; = a,q,0,
become:
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It is obvious that these equations are divided into
four systems: one of four equations with four variables,
two of two equations with two variables and one of one
equation with one variable.

They can be easily transformed into a homogeneous
system and reduced into the following systems:

{30“ + /30, + \/502, —30,,=0
01— V30, — V30, —0,=0,

—30,; + \/5023 =0
63+ V30,;=0,
—30,, + \/'31032 =0
oy, + ﬂo,, =0,

05, being independent.

When solved, the first system gives g,, = 0,, and
0, = —0,, the second and third systems give o,; =
0,3 = 0 and o0,;, = 0,, = O respectively. Hence for
class 3, a second-rank non-symmetrical tensor takes
the form:

o, 0, 0
—0,, o, 01},
0 0 o0y

and therefore there are three independent coefficients
(as given by Thurston, 1974).

3.2. Homogeneous systems

The program used here to obtain the homogeneous
systems for the fourth-order elastic coefficients follows
almost exactly the preceding principle. These
coefficients are components of an eighth-rank sym-
metrical tensor which enables one to write them in the
form C,,;, where the four subscripts vary from 1 to 6
following the notation of Voigt (1928): 11 = 1,22 = 2,
33=3,23=32=4,31=13=15,12=121=6. The
order of the subscripts has no importance. Thus there
exist at most 126 fourth-order elastic coefficients.

Fig. 1 shows the flow chart of the program used and
Fig. 2 is an extract showing the form in which the
homogeneous equations are obtained. For any
generator, these equations involve at most 20 variables.
For a given generator, when all the 126 equations are
obtained, it appears they can be grouped into systems

Table 2. Systems of equations for the group R11

1 V3 V3 3
on Zou - _4_012 - T"u + 2022’
V3 1 3 V3
Op= Tou + 2012 - Zou - _4"022’
1. 3
0,3 = —=0,3 + —0,3,
13 5% 5 O
V3 3 1 V3
0y =——0, — =0, + =0y — ——0,,,
21 g 1T %t 0 3’2
3 V3 V3 1
On =Zan + Tolz + Tou + ~02»
V3 1
O3 = _Tau - 5 023
1 V3
03, _5031 + Tow
V3 1
0y, = _2—031 5032’
033 =033
Number of systems 1 1 I 2
Number of equations 20 18 15 12

1
10
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containing at most 20 equations. The number of
systems and the number of equations in each system
depends on the considered generator. For example, one
obtains 15 systems of n equations in n variables for the
trigonal system (RII group, generator R}) as shown in
Table 2.

There is a total of 126 equations corresponding to
the 126 possible fourth-order elastic coefficients.

| Bloops mn pgrstxvarying from | to 3
L {subscript of the left hand term)
Elimuinate the redundant terms by using the sym
metry Lo amor mapg  pgmn.elc .. ..

Transform the 8 subscripts varving from 110 3
in 4 subscripts AfAPQ varying from 110 6
following Voigt's notation

Write the subscript of the studied coefficient :
r, MNPQ

Instiathze the matrix P containing the factors
associated with the coefficients of the nght
hand side Dimension Pi6. 6. 6. 6)

| hand side to obtain a homogeneous equatiol
Rloops e fe hijh Ivarving from 1103}
{subscripts of the nght hand side)

[ntroduce the studied coefficientin the nght
n

varying from 110 6
Order the subscripts J
Calculate the tensor relation for the right hand
side term studied B, a,,a,

T next
subsceript
Accumulate #anthe POE.F. G. H) element of

the matrix P J

Transform the 8 subscripts in 4 subscripts EFGI l

Are all the
loaps ol the right hand side
performed?

Fetch the smallest element different from zero
of the matnx P:§

the s;.udwd no Is S
coefficient existing”?
is independent

ves

Scan the matrix P by four loops FFGH varving
from 10 6

Write the subscripts of the successive elements
ditferent from sero of the matrix P2V, EFGH
and the associated factor: @, - P(E. F.G. 1)

I

Give the homogenous equation associated with
the coefficient U, under the form:
r- .

< a, Vv 0see Fig. 2)

Is the scanming
tinished?

Are all the
loaps of the left hand
side performed?

Fig. I. Flow chart of the program giving the homogeneous
equations.
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3.3. Resolution of the homogeneous systems

When all the homogeneous equations corresponding
to the studied generator are obtained from the first
program, it is possible by simple examination to group
them into systems as can be shown by the example
given in § 3.1 or by the extract given in Fig. 2. They are
homogeneous systems of n equations in m unknowns
(generally n = m). ;

The problem is to calculate the rank of these systems
and to obtain the dependence relations between

c 11111 c e
*21,2504 o C 1111 140000 & ¢ 1138
140000 o C 1112 -;;.oocc .
*141547 o ¢ 1116 942376 c
4,:5000 ¢ C 1122 3040003 * c 1122
#10:3923 » C 1126 *35.4358 « C 112¢
610000 ¢ C 11g6 iz-OOOI *C liee
$,0000 » ¢ 1222 36,0002 » ¢ 1222
*31,41770 ® C 1226 83,1389 ¢ C 1226
3640001 o C 1266
*13:8360 * C 1646
67800 ¢ ¢ 2282
*3141774 * C 2226
54,0003 ¢ C 2266 »72,00Cs o C 2246
*81,5693 * C 2646 11048516 © C 2666
1240000 * C 6466 ®48¢0001 © C 6646
.0 .0
C e € 1118 2
140000 ¢ C 1111 74,4786 ¢ C 1110
8+0000 * C 1312 140000 = C 111g
*159,3497 o ¢ 1116 Be1962 o ¢ 1128
1840001 * C 1122 940000  C 1125
062,3841 o C 1126 *640000 « C 1la¢
4800002 » € 1146 ©1003923 o ¢ lla‘
10008 * ¢ 1222 15,5885 o ¢ 123s
4203548 ¢ C 1226 2740003 * C 1228
144,0008 ¢ C 1266 ©264000] » C 1248
8301388 ¢ C 1666 *ed138a0 * C 12g¢
*27,0002 ¢ o 2222 2007804 o 18d6
4243841 o E 2226 3640001 * 1566
40003 o C 2246 15,5885 « C 2224
83,1392 ¢ C 2666 270002 « C 222
00003 © C s666 ©34,0002 « 220?
(1] 93,5313 ¢ C 22%6
6213300 ¢ C 2466
[SRRRLIN] 10840003 « C 2346
140000 « ¢ 3138 w24,0001 o C 4666
*741478¢ ¢ C 111 *4105698 ¢ C Se4e
$.8000 o ¢ 112 0
*5.1962 ¢ C 1125 G000 0000000R00000E 000t EN A RS
©10,3923 o C 1146 C 1166 ¢
+0000 ¢ C lisg 1400C0 o C 1111
27,0001 ¢ ¢ 1226 20000 & C 1112
15,5885 « C 1225 312376 « ¢ 1116
6243540 o C 1246 *240000 ¢ 1122
3610003 # C 1256 *18,4753 ¢ C 1126
3640001 « ¢ 1846 °56+0004 * C llge
02047846 * C 1566 »1240001 o ¢ 1222
27,0002 « c 2226 27,7129 * C 1226
':gl ;:g e C 5232 1600002 o ¢ 1266
93, .c . *360950p ¢ C 1
54,0002 « C 2256 3-0308 . c 2533
108,0006 « C 2466 «C0CY @ C 2226
6243540  C 2566 24,0001 » C 2266
4105694 ¢ C 4666 *10001 * C 2666
2640001 ® C 5446 16400C1 © C ppp6
0 .0
. seseneees: eessces
C 1136 @ C 1156 ¢
140000 » ¢ 1113 *147321 « C 1114
8-0000 s C 1123 1:0000 ¢ C 111g
*45,0335 1136 846603 » c 1124
3,0000 ¢ E 1223 540000 ® C 1125
*20,7847 o C 1236 14,0000 o C 1146
20,0001 * € 134, 6508183 ¢ C 1lxg
*940000 ¢ - 222 -g'xSoa . i2as
1043923 o E 2236 3.0000 « 122%
12400C1 » ¢ 2366 36,0002 « C 1246
1348563 o C 3666 %20078,7 * C 12gp
"30,6411 o 1886
2000001 ¢ C 1566
€ 1183 ¢ 15,5388 » C 2224
150000 o C 114s *94C0000 * ¢ 2225
“1e1587 ¢ C 148 *1840000 ¢ ¢ 2248
*21,0001 * ¢ 1155 1043923 » ¢ 2236
640000 & C 1240 *2047848 ¢ C 2486
*6¢9282 ¢ C 1248 1240001 & C 2566
.f-gggg : c }faz 24,0002 = C #6646
[ ¢ “13485¢8 ¢ C 5,
8,0000 ¢ C 1436 1308368 ¢ € Seve
=2,3094 « C 1556 casene ..
s.ggoo e C 22,4 C 1113 3
®1043923 o ¢ ©740000 = C 1113
340000 ¢ C 140000 ¢ € 1123
*2047867 o ¢ “le1887 o 1136
2:c°°01 . C 3,0000 « € 1223
*6.9282 ¢ C «6:9282 » C 1236
12,0000 * € 90000 ¢ C 13
1348868 o C 300000 « ¢ 2289
440000 « ¢ 1043923 o T 2236

1240000 * C 2366
*%:6188 * C 3646
0

Fig. 2. Facsimile showing the form under which the homogeneous
equations are obtained.
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coefficients. One obtains at the same time the zero and
independent coefficients.

Although program libraries probably include
algorithms able to solve this problem, the particular
form of the systems to be reduced makes the work
simpler so that the program has been conceived in
Basic language and used with a desk-top computer. The
simplification comes from the a;’s which can always be
reduced to integers or integers multiplied by \/3, what-
ever the generator is. This fact is easy to understand by
examining the matrices of the possible generators, the
elements of which are always rational or rational
numbers multiplied by \/§ as shown by Birss (1963).

Enter factors a,,
in the matrix 4

Exchange colums of 4 to put the independent
coefficicnts chosen at the front

Multiply lines of A to obtain only integer
factor

I
Let P the reference line. P vary from 1won J——<——
I
—9—!7 Let Q the last non zero term of the line P J

no

;

yes

change of
column
toward the
left

Fetch in the same column a term dafferent
from zero

N

;

l Exchange the corresponding line with line J

Make a hnear combination of line P with
each following line to cancel all the ele
ments of the column Q after the hine P

- 1o keep J

ves
Scan the triangular matrix beginming with the
last line and the last column

Fetch the last non-zero term of the scanned
fine

Divide all the other terms of the scanned
linc by this number

Replace the obtained relation in all the pre:
ceding lines

Write the indices of the non-zero term

Divide these lines by 2. 3.5.7
numbers prime between them

|
|
|
|
=

the corresponding
coefficient is l

null

Express this coefficient as a function of the
preceding independent coefficients

Isthe
first linc
reached?

next line

Fig. 3. Flow chart of the program used to obtain dependence
relations between coefficients.
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Fig. 3 shows the flow chart of the program used. The
matrix of the coefficient factors is set in triangular form
by expressing one of the coefficients as a function of all
the others and carrying the relation obtained over the
n — 1 remaining equations and so on. Eventually one
obtains k relations between the n coefficients (k < n).
Some equations give zero coefficients, others express
dependent coefficients as functions of independent
coefficients. The arbitrary choice of these independent
coefficients was made by taking into account the degree
of symmetry between subscripts; that is, in order of
preference the coefficients are taken as C,,;, C,;,; Crypyo
C,x» Cpxe- For equal symmetry, the lower numerical
value is chosen. Use of another choice is, of course, a
matter of personal preference and the modification
presents no difficulty.

3.4. Remark

For groups having several generators, results are
obtained by means of the resolution program, systems
corresponding to the different generators being con-
sidered simultaneously. The isotropic case is treated by
applying the resolution program to all generators of the
Laue groups and then using all the resulting depen-
dence relations simultaneously.

4. Results and verifications

The coefficients obtained by this method are given
according to the notations and definitions of Brugger
(1965). The two programs have been checked on the
second- and third-order elastic coefficients for all the
Laue groups as well as the second- and third-order
piezoelectric coefficients for the point group 32. One
obtains, in this way, the classical results compiled by
Thurston (1974) and Bechmann & Hearmon (1969).
By changing the choice of the independent coefficients,
the fourth-order elastic coefficients given by Markens-
coff (1976) for the Laue group RI were checked.t The
fourth-order elastic coefficients for group C1 given by
Krishnamurty (1963) are correct but the relations he
obtains manually for the isotropic case, although using
the proper coefficients, are erroneous.

The number of independent coefficients obtained for
each Laue group corresponds to that calculated by
group theory and given by Krishnamurty (1963) and
Krishnamurty & Gopalakrishnamurty (1968).

Table 3 summarizes the results obtained for the
eleven Laue groups and the isotropic case. Only the
subscripts are specified. The asterisk () indicates an
independent coefficient and the numbers in brackets
refer to the footnotes.

T Except for an error of sign in the coefficient C,,,.
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Table 3. Independent fourth-order elastic coefficients for the 32 crystal classes

N

1111
1112
1113
1114
1115
1116
1122
1123
1124
1125
1126
1133
1134
1135
1136
1144
1145
1146
1155
1156
1166

*EEOO 20O # 1OO & # OO # & # ¥ XN
O B EO 2O 4O O #O 2O 2O # o » ¢ =X
2O 2O # % BOO # OO # # 2OO + . » N
*TO HOO 1000 #OOCO # OO & # O

1222
1223
1224
1225
1226
1233
1234
1235
1236
1244
1245
1246
1255
1256
1266

“ EREOO OO R ROO * w
2O # 20 #O #0O 2O 2O & 0w
2O 2O # &2 OO # TOO » =
*TO OO0 OO0 OO0 # =

1333
1334
1335
1336
1344
1345
1346
1355
1356
1366

* 8 OO OO # »
*#O # 2O 2O 2O =
*TO H#O & RO =
*O OO #O OO =

(1) Cyia=—3Ci111 + §Cz — 2Cg66 + 1Cr12-
(2) Ciau=— §Cnu — 1L 56660

(3)  Ciias=—4Crps + $Cusss:

@) Ciig=— §Cms‘

(5)  Ciie=14C 115 + $Cops.

(6) Chss=—3Ci— $Cone

(N Cugse=—%Crniu + 5Cam + $Css6s — §C 1122
(8)  Ciz2=§Cr111 ~ $Ca222 — 2Cee66 + 1Cru22:
(9) Cizp3=Ciji3— Cagps + Crpase

(10) Ciy54=—4Cy 14 + $C s

(1 Cins=— §Cms — 3L 4666°

(12) Cipe=— §an

(13) Ci3=Cips3 — zcsue-

(14) Ci=— ‘}Cnu - ‘}Cnu-

(15) Cins=— icms - &Cnss-

T

2O # # OO0 # OO # B OO #*

L K=

1112
1123

—1126

soRoo scoco »

#O #O # & OO #

=

2OO #0000 #0000 # OO0 # # &

- O

1112
1123

roRoo s000 ro00O

*O #O0O 0O RO OO

RII RI HII HI cl CI I

* L] * * » * »
(n (N (N D * * (57

* * * * * 1112 1112

* * 0 0 0 0 0

* 0 0 0 0 0 0

* 0 b 0 0 0 0

* - * * - * -

- L - = = » (58)
(2) 2 0 0 0 0 0
3) 0 0 0 0 0 0
4) 0 4) 0 0 0 0

* * * * 1122 1122 1122

* * 0 0 0 0 0

* 0 0 0 0 0 0

—3666 0 —3666 0 0 0 0

* - - - - * L]

* 0 * 0 0 0 0
(5) 0 0 0 0 0 0

= * * * - - (59)
(6) (6) 0 0 0 0 0
(7 @) @) (7 * 1155 1155
(8) (8) (8) (8) 1113 1112 1112
) 9 9) 9) 1123 1123 1123
(10) (10) 0 0 0 0 0

(11) 0 0 0 0 0 0
(12) 0 (12) 0 0 0 0
(13) (13) (13) (13) 1123 1123 1123
(14) (14) 0 0 0 0 0
(15) 0 0 0 0 0 0
3666 0 3666 0 0 0 0
(16) (16) (16) (16) * . " (60)
an 0 a1 0 0 0 0
(18) 0 0 0 0 0 0
(19) (19) (19) (19) * 1244 1244
(20) 20) 0 0 0 0 0
@D (21) ey @y » . (61)
* * * * 1112 1112 1112
* * 0 0 0 0 0
* 0 0 0 0 0 0
0 0 0 0 0 0 0
* * . * 1255 1244 1244
3446 0 3446 0 0 0 0
(22) 0 0 0 0 0 0

* * * . 1266 1266 1266
(23) (23) 0 0 0 0 0
(24) (24) (24) (24) 1244 1244 1244

(16) Clzu = §C1|44 + 2C1155 - %Cn« - ZC““
(17) Cy45 = —$C11as + 3Cruse

(18) Ciy46=—3C 1115 + $Caass — $Cgee:

(19) Ci255 = 3C)10a + Ciiss — $Ca0ua — 2C 446
(20) Cp56= %Cma T 82224 T 3% 5666

(21) Cz66 = 1%Ci111 + 16Ca222 — $Cs6s — $C 1122
(22) Ci346 =1C\ 135 + §Caa3s

(23) Ciase=— %Cna‘ - icnw

(24) Cy366 = = $Cp13 + $Cany — #C 105

(57) Ciy=1C111 — 2Cuuas + 1Cr1nr

(58) Ci1a3=Cp12a— 2C,pue

(59) Ciiss=4Ci1n + $Couis — #C1122

(60) Cy200 = 15C1111 = 3Cusse — 15C 1122 + $Ch0ue
(61) Cia6=4Ci111 — $Cuuas — §C 122



=
>~

1444
1445
1446
1455
1456
1466

1555
1556
1566

1666

* # OO #
2O # O RO QC *O ..<§
*® O 20O O O #O0OO N
O OO O OO0 OCQ o

S OO0
(=]

2222
2223
2224
2225
2226
2233
2234
2235
2236
2244
2245
2246
2255
2256
2266

®* OO #O0O0C # 2O &+ & &
2O # 2O 2O 2O #O #O # &
2O #O0 # # OO # OO # &
2O #O0O0C #0000 #OCO # &

2333
2334
2335
2336
2344
2345
2346
2355
2356
2366

2444
2445
2446
2455
2456
2466

2555
2556
2566

2666

*O # O 2O 2O
2O 2O # 2 2O »

* 8 OO OO #* #
20O #O O # OO0 =

O OO # RO O =

*TO # O #O O #O
* O *O O O OO
O OO0 © OO C0O

(=]

(25) Cms =- &Clsss - gczsss-

(26) Cyss=—3Cruaa — 3Coun

(27) Cyas6 = —4C 1104 —1C 1155 + 1Conue
(28) Ci66 = — $Ci11a — $Canae + 4Csee6:
(29) Ci566=—4Ci11s — $Caa2s — $Coee6-
(30) Cie66 = 1116

(31) Cypus=—14C 145 — $Cruaer

(32) Cpps = ms — 8Cans-

(33) Chpss = Ciraa *+ Criss — Crraa

(34) Cpy56=14C 1114 + $Cone

(35) Cazes = 15Cun — %6Cn22 + $Cos66 — #C1122-
(36) Chye6=—1Ci13s — $Capss-

REMI BRENDEL

=

@ O O O #0O *OC

1111
1113

—1116
1133

—1136
1155
—1145
1144
1166
1333
—1336
1355
—1345
1344

1366

—1556

1456

—1446

—1666

Co0 © 10000 N
_

(=}

1111
1113

- = —_ _
AOROCOGO0CO ;000
[=,) &> W w

._.
w
w
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Table 3 (cont.)

RII RI HII HI Cll
. * 0 0 0
(25) 0 0 0 0
. 0 * 0 0
(26) (26) 0 0 0
27 2n 27) 27 .
(28) (28) 0 0 0
. 0 0 0 0
—1446 0 —1446 0 0
(29 0 0 0 0
(30) 0 (30) 0 0

- L] L] - l 1 ] ]

* * * * 1 1 12
* * 0 0 0
* 0 0 0 0
1116 0 1116 0 0

1133 1133 1133 1133 1122
* * 0 0 0
* 0 0 0 0
—3666 0 —3666 0 0

* . . . 1166
31 0 31 0 0
(32) 0 0 0 0

(33) (33) (33) (33) 1144
(34) (34) 0 0 0

(35) (35) 35) (35) 1155

1333 1333 1333 1333 1

—
—
w

—1334 1334 0 0 0
—1335 0 0 0 0
0 0 0 0 0
1355 1355 1355 1355 1266
—3446 0 —3446 0 0
(36) 0 0 0 0
1344 1344 1344 1344 1244
37 37 0 0 0
(38) (38) (38) (38) 1255
* * 0 0 0
(39) 0 0 0 0
(40) 0 (40) 0 0
(41) 41) 0 0 0
(42) 42) (42) (42) 1456
(43) (43) 0 0 0
. 0 0 0 0
(44) 0 (44) 0 0
(45) 0 0 0 0
(46) 0 (46) 0 0

(37) Cu56 =3Crisa + 1Conasr

(38) Ciye6 = ‘}Cma - %szu - }CIIH'
(39) Couus=— §C1555 —4Cosss

40) Crus= §C||45 - ‘}Clue'

(41) Cpyss=— $Cruaa— ‘_}Cu«-

(42) Cres6=—4C1a4 + $C115s— $Crus
(43) Coyps=— %Cnu = 3Ca224 — 1Csgeer
(44) Cy556=—3Ci1ss + 1Cruser

(45) Cys66 = — $C 1115 —$Cons + 1Cae6-
(46) Cirge6=— 1Cie

(62) Crys6=HCrint 1Couus— $Ci2 —$Chue
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INDEPENDENT FOURTH-ORDER ELASTIC COEFFICIENTS FOR ALL CRYSTAL CLASSES

Table 3 (cont.)

532
M

N X Y 4 0 T T1
3333 * . * . * *
3334 * 0 0 0 0 0
3335 0 * 0 0 0 0
3336 0 0 * 0 0 0
3344 * * * * * *
3345 0 0 * 0 0 0
3346 0 * 0 0 0 0
3355 * * * * 3344 3344
3356 * 0 0 0 0 0
3366 * * * * * *
3444 * 0 0 0 0 0
3445 0 * 0 0 0 0
3446 0 0 * 0 * 0
3455 * 0 0 0 0 0
3456 * * * * * *
3466 * 0 0 ) 0 0
3555 0 * 0 0 0 0
3556 0 0 * 0 —3446 0
3566 0 * 0 0 0 0
3666 0 0 * 0 0 0
4444 * * * * * *
4445 0 0 * 0 * 0
4446 0 * 0 0 0 0
4455 d * * * * *
4456 * 0 0 0 0 0
4466 * * * * * *
4555 0 0 * 0 —4445 0
4556 ) * 0 0 0 0
4566 0 0 * 0 0 0
4666 0 * 0 0 0 0
5555 * * * 4444 4444
5556 * 0 0 0 0 0
5566 * * * * 4466 4466
5666 * 0 ) 0 0 0
6666 * * * * * *
(47) Ciys6=—34C 344 + 1C 1355

48) Ciaee = — *Cnu - 2234°
(49) Csseo == icms - &Cms'
(50) Cya6 = — 31Cy555 + $Cisss
Sn Cuss = *C«u‘

Except for the monoclinic system, where three
orientations have been studied, the reference is always
the z axis, as shown in column (d) of Table 1.

5. Conclusion

The program used for the fourth-order elastic
coefficients can be adapted without difficulty to the
calculation of coefficients of all kinds and all orders
(permittivity, piezoelectricity, efc.), as long as they are

RII RI HII HI Cl CI I

* * * * 1111 1111 1111

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

* * * . 1155 1155 1155

0 0 0 0 0 0 0

—1335 0 0 0 0 0 0
3344 3344 3344 3344 1166 1155 1155
1334 1334 0 0 0 0 0

* * * * 1144 1144 1144

* * 0 0 0 0 0

—3555 0 0 0 0 0 0

* 0 * 0 0 0 0

—3444 3444 0 0 0 0 0
47) 47 47 47 1456 1456 1456
(48) 48) 0 0 0 0 0

* 0 0 0 0 0 0

—3446 0 —3446 0 0 0 0
49) 0 0 0 0 0 0

* 0 * 0 0 0 0

* * * * * * *

0 0 0 0 0 0
(50) 0 0 0 0 0 0
(1) (51) (51) (51 * * (51
(52) (52) 0 0 0 0 0

* * * * 4455 4455 4455

0 0 0 0 0 0 0
(53) 0 0 0 0 0 0
(54) 0 (54) 0 0 0 0

* 0 0 0 0 0 0
4444 4444 4444 4444 4444 4444 4444
(55) (55) 0 0 0 0 0
(56) (56) (56) (56) 4455 4455 4455

* * 0 0 0 0 0

* * * * 4444 4444 4444

(52) Cuso = %Cuu - éczaw

(53) Cygs6=—$Cisss + $Csss:
(54) Cyse6 = —4Chras + $Cra46
(55) Cssso: Crass — $Cous

(56) Cys66=—Cpiss + C

2244 + Casger

components of a tensor for which equation (1) holds. In
practice, the time of calculation is an exponential
function of the rank of the tensor, thus a practical
upper limit is reached for tenth-rank tensors.

There is no difficulty in applying the program to the
calculation of the relations between coefficients for any
rotation for which the matrix is known.

The author wishes to thank Dr J.-J. Gagnepain for
his interest and support and Dr B. A. Auld for revising
this manuscript.
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Magnetic Structure of PrCo,Ge,, a Neutron Diffraction Study
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Abstract

The crystallographic structure of the compound
PrCo,Ge, is of the BaAl, type. The space group is
I4/mmm and the lattice constants are a = 4-048 and
¢ = 10-178 A. A neutron diffraction study revealed a
transition to a magnetically ordered state at T, ~ 27 K
and six superlattice lines below T. It is possible to
index these lines according to a sinusoidal magnetic
structure with a period 7' = 13.94 A along c.
Observed intensities are consistent with ordering of the
Pr sublattice with the magnetic axis along c.

I. Introduction

The compound PrCo,Ge, belongs (McCall,
Narasimhan & Butera, 1973a) to the series of
compounds AB,X, (4 = U, Th, rare-earth; B = Mn,
Fe, Co; X = Si, Ge). These compounds crystallize with
the BaAltype structure, which belongs to the tetra-
gonal space group I4/mmm (D3j). The lattice con-
stants of PrCo,Ge, as determined by X-rays (McCall
et al., 1973a) are a = 4-048 and ¢ = 10-178 A. Mag-
netic-susceptibility measurements (McCall, Narasimhan
& Butera, 1973b) exhibit a peak at 28 K with the
susceptibility rising with decreasing temperature down
to 4.2 K. It was suggested that this behaviour is due to
the antiferromagnetic ordering of the Pr ion. In the
present paper we report the results of a neutron
diffraction study of a powder sample of PrCo,Ge,,
undertaken in order to determine the magnetic struc-
ture of this compound.

0567-7394/79/040533-04$01.00

I1. Experimental

The powder sample was synthesized by arc melting
under an atmosphere of argon gas. Neutron diffraction
patterns were taken at room temperature (RT) and
liquid-helium temperature (LT). The RT and LT
patterns are shown in Fig. 1. All the reflections
observed in the RT pattern are in agreement with the
reported lattice constants (McCall et al., 1973a). Six
superlattice lines are observed in the LT pattern. The
remaining lines can be indexed according to the unit cell
with lattice constants @ = b =4-037 and ¢ = 10-173 A.
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Fig. 1. Neutron (A = 2-45 A) diffraction patterns of PrCo,Ge, at
(a) RT and (b) LT. No reflection was observed in the range 5° <
26 < 33° (not shown). The subscripts S in the LT pattern are for
superlattice lines. The RT and the LT patterns were indexed
according to a = 4048, ¢ = 10-178 A and @' = 4-037, ¢’ =
10-173 A and 7! = 13-94 A respectively.
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