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Abstract 

Numerical methods can be used to obtain the depen- 
dence relations between components of an nth-rank 
tensor for the particular symmetries of each crystal 
class. The program has been used successfully to 
calculate the fourth-order elastic coefficients, cor- 
responding to a tensor of eighth rank for all crystal 
classes and the isotropic case. 

1. Introduction 

Higher-order non-linear coefficients have an important 
place in the behaviour of acoustical devices. In fact, 
they induce the dependence between the velocity and 
the amplitude of an elastic wave which causes 
variations of the time delay and harmonic generation in 
delay lines and filters. In resonators, they introduce an 
amplitude-frequency effect as shown by Gagnepain & 
Besson (1975). Also, the non-linear coefficients are 
involved in the sensitivity of these devices when 
subjected to external perturbations such as temperature 
fluctuations, pressure, accelerations, vibrations, forces, 
etc. These phenomena are the cause of instabilities in 
devices which need to be stable (particularly in the case 
of oscillators). Conversely, the non-linearities some- 
times can be used, for instance for sensor applications. 

The major part of these phenomena can be explained 
in terms of third-order coefficients. However, the 
increasing precision of measurement systems reveals 
phenomena which can be justified only with the 
introduction of fourth-order coefficients. Moreover, the 
dependence between the amplitude and the velocity of 
an elastic wave cannot be explained completely without 
taking into account the fourth-order coefficients 
(Tiersten, 1974, 1975). 

In order to obtain the equations describing the 
behaviour of acoustical devices, it is necessary to know 
the interdependence relations between non-linear 
coefficients which are components of tensors, for 
instance, the third- and fourth-order elastic coefficients 
are components of sixth- and eighth-rank tensors 
respectively. 
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The interdependence relations depend on the par- 
ticular symmetries of each crystal class (see for 
example Nye, 1957). Zero coefficients, independent 
coefficients and interdependence relations are well 
known for tensors up to sixth rank. They are listed by 
Thurston (1974) and Bechmann & Hearmon (1969). 
Some particular cases of eighth-rank tensors were 
studied by Krishnamurty (1963) and Markenscoff 
(1976) but no systematic investigations have been 
performed because of the very large number of 
calculations required. 

The method used here to obtain interdependence 
relations between tensor components is based on the 
fundamental transformation law for tensors; the tensor 
components must be unchanged when the transform- 
ation corresponds to a symmetry of the crystal. 

For instance, for a second rank tensor o u, this law is 
t written trij = O ~ i k t t j l a k l  , where the aos represent the 

matrix elements of a particular considered rotation; if 
this rotation corresponds to a symmetry of the crystal, 
the tensor a~j remains unchanged and the transfor- 
mation law becomes aij = Ct~kaj~Okr When all the 
equations are developed it appears they can be grouped 
into systems which, when solved, give the inter- 
dependence relations. 

In the most general case this method needs 32n terms 
for an nth-rank tensor, e.g. 81 for n = 2 but more than 
500 000 for n = 6 and more than 4 x 10 7 for n = 8. 
Although this method cannot be used manually, the 
tensor formulation is particularly suitable for numerical 
methods. 

2. Crystal symmetries 
Suppose that a particular physical property of a crystal 
can be described by a tensor of nth rank (n = 8, for 
example). In a transformation of axes, the components 
of this tensor CelghUkt become: 

Cmnpqrstx : Ctme t~nfClpg(tqh~ri Clsj (I,'k(txl CefghUkt (1) 

where t~ u is the transformation matrix. 
If the transformation corresponds to a symmetry of 

the crystal, relation (1) is an identity and we have: 

Ctnpqrstx ~- Cmnpqrstx. 
© 1979 International Union of Crystallography 
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Table  1. Symmetr ies  o f  the different crystal classes 

Fourth-order 
Crystal Laue independent Crystal classes 
system group Generators coefficients (point groups) Generators 

(a) (b) (c) (d) (e) ( f )  (g) (h) 

1 C l R l Triclinic N I R 1 126/126 i C l - R  

{~m C2 R~ Monoclinic M II R~ 70/70 C~ -R~ z 
2 Cz, - R  , R~ 

2 2 42/42 Orthorhombic O III R ~, R 
222 D 2 R~, R~ 

mm2 C2,, -RZx, R 2 
mmm Dz~ _ ~ 2 2 R ,Rx, R ~ 

Tetragonal 

{~m C4 R~ TII I r a  R~ 64/36 S 4 --R 4 
4 C4h - R  t, R~ 

( 422 D 4 R2x, R~ 
4 2 42/25 ~ 4mm C4v --RZx, R~ 

TI IVb R~,R x ~ F42m D2a R2x,-R~ 

~4/mmm D4~ - R  2, R~ R4z 

RII Va R~ 118/42 {~ C 3 R~ 
C31 1 3 - R ,  R~ 

Rhombohedral 
(trigonal) ( 32 D 3 R~, R~ 

RI Vb R~, R~ 69/28 t3m C3v -R~, g~ 
3m D3d - R  l, R~, R] 

Hexagonal 

{ ~  C6 R~ 
HII Via R~ 64/24 Cab -R~ 

6/m C6h -R  l, R~ 

[ 622 D 6 R2, R~ 
6_ram C6v - R ~  R~ 

HI VIb R~ R~ 42/19 | 6m2 D3h RZx,--R~ 

[6/mmm D6h RI R2 p6 

/ 23 r R~,R$ 
CII VlIa 2 2 R~,Ry, R~ 42/14 m3 T h _Rl pz pa 

Cubic 
R , R  (isometric) [ 432 O 4 J z p 

4 4 4 42/11 ~43m T a 4 3 CI VIIb R~, Ry, R z --R:, Rp 
~m3m 0 h ~ 4 --R , R~, R~ 

Isotropic I All 42/4 All 

(a) Usual name of the crystal system. 
(b) Laue groups after Thurston (1974). 
(c) Laue groups after Bechmann & Hearmon (1969). 
(d) Generators for even-rank tensors after Thurston (1974). R7 means a rotation of 2n/n about the z axis. p axis corresponds to the 
direction (111). 
(e) Number of non-zero coefficients and number of independent fourth-order coefficients. 
( f )  Hermann-Mauguin symbols for the point groups. 
(g) Schoenflies symbols. 
(h) Generators for odd-rank tensors after Birss (1963). - R  ~ means the transformation matrix -t~ u. 
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Table 1 summarizes the symmetries corresponding 
to the 11 Laue groups and to the 32 crystal classes. 

3. Numerical method 

3.1. Principle of the method 

The best way of presenting the principle of the 
numerical calculation is to give a typical example. In 
the rhombohedral system class 3, a second-rank tensor 
o o representing some physical property of the crystal 
remains unchanged by a 2zt/3 rotation about the z axis. 
In the tensor transformation law, the aij's are the 
elements of the matrix 

1 v~  0 
2 2 

0 
2 2 " 

0 0 1 

In such a case, the nine equations o~/ = atk%akt 
become: 

l V/3 V/3 3 
o,, = ~ o , , - - X - o , ~  ~o~ ,  + ~o,~, 

V/3 1 3 V/3 
o,~ = T o , ,  + ~o,~ - ~o~ , -  T o ~ ,  

1 .  v/~ 
°,9 = - ~ ° , 9  + - y - ° . ,  

V/3 3 1 V/3 
o~, = T o , , - ~ o , ~  + ~ o ~ , - - ~ o ~ ,  

3 V/3 V/3 1 

0'23 --  2--0,9 --  -~ 0'23, 

0'39 -~ 0'93. 

It is obvious that these equations are divided into 
four systems: one of four equations with four variables, 
two of two equations with two variables and one of one 
equation with one variable. 

They can be easily transformed into a homogeneous 
system and reduced into the following systems: 

3a,, + v/3a,2 + v ~ a 2 , -  3022 = 0 

° , , -  V % , ~ -  v '%~, -  o~ = o , 

-3a ,9  + X//3a29 = 0 

0"13 + ~/c3a23 = 0 , 

-303,  + V/3032 = 0 

O"31 + V/c3o92 = 0 , 

0"33 being independent. 

When solved, the first system gives al~ = 022 and 
o2, = -0,2,  the second and third systems give 0,3 = 
az3 = 0 and 031 = 092 = 0 respectively. Hence for 
class 3, a second-rank non-symmetrical tensor takes 
the form: 

a l l  O'12 0 3 )  
12 a l l  0 , 

0 03 

and therefore there are three independent coefficients 
(as given by Thurston, 1974). 

3.2. Homogeneous systems 

The program used here to obtain the homogeneous 
systems for the fourth-order elastic coefficients follows 
almost exactly the preceding principle. These 
coefficients are components of an eighth-rank sym- 
metrical tensor which enables one to write them in the 
form Cu~, where the four subscripts vary from 1 to 6 
following the notation of Voigt (1928): 11 = 1, 22 =- 2, 
3 3 - - 3 , 2 3  = 3 2 = 4 , 3 1 =  1 3 = 5 ,  1 2 = 2 1 = 6 .  The 
order of the subscripts has no importance. Thus there 
exist at most 126 fourth-order elastic coefficients. 

Fig. 1 shows the flow chart of the program used and 
Fig. 2 is an extract showing the form in which the 
homogeneous equations are obtained. For any 
generator, these equations involve at most 20 variables. 
For a given generator, when all the 126 equations are 
obtained, it appears they can be grouped into systems 

Number of systems 

Number of equations 

Table 2. Systems of equations for the group RII 

1 l l 2 1 1 2 l l 

20 18 15 12 10 9 6 5 4 

2 1 1 

3 2 1 
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containing at most 20 equations. The number of 
systems and the number of equations in each system 
depends on the considered generator. For example, one 
obtains 15 systems of n equations in n variables for the 
trigonal system (RII group, generator R~) as shown in 
Table 2. 

There is a total of 126 equations corresponding to 
the 126 possible fourth-order elastic coefficients. 

8 loops m n p q r $ ! .~ ~arying from I to 3 
(~ubscnp( of  the left hand term) 

I 
l ' l imtnatc the redundant  terms b3 using the s~,m 
metr~ : mn ,ira or m , p q  pqmn. etc . .. 

I 
I ransform the 8 subscripts var?.ing from I to 3 
nn 4 subscript~ %iVPQ ~arying from 1 to 6 
following Volgt'% notat ion 

l 
%ri te  the subscript of  the studied coefficient : 

( ", ~I.%'f)Q 

1 
Jnltl:lh/e the matrix P containing the factors 
a ~ o c i a t e d  ~ ith the coefficients of  the rtght 
hand snde I)lmension P(6.6.6. 61 

1 
[nlroduce the studied coefliclent on the right 
hand side to obtain a ht)mogenet+us equatior~ 

I 
8 1 o o p s t ' l g h i j ~  /~a rv lng  from I t~ ~ I - 
(subscripts of  the rlghl hand ~udc} 7--'-- 

1 
l r ans fo rm the 8 subscripts  in 4 subscr0pts EFGt l  
~ur~.lng from I to 6 

I 
(')rdcr the subscripts 

I 
[ :dculate the tensor relation fbr the right hand 

~lde term studted |,I' tl,.. t in , . ,  tl , ,  

,%ccucnulate H' in I he P( t:.  t ' .  G. t f )  element ~f 
the matrix P 

no 

| 'e tch the smallest element difierent from zero 
of the matrix P : S  

is independent , 

Scan lhe matrix P b~. f(~ur loops t:I 'GH ;arymg 
from I to 6 

I 
Write the subscripts of  the ~ucccssl~ e elements 
ddfercnl from zero of the matrix P :  I '  E, tGt t  
and the associated factor: a o - P( / : .  F. G, II}/S 

I 
f;i~ e the hc)mogenous equat ion associated x~ ith 
the coefficient U, under the form: 
(',: a, ,  !.', 

, a,: L': 

- a "  I'" : 0 ( s e e | . t g .  2) 

no 

.~es 

no 

Fig. 1. Flow chart of the program giving the homogeneous 
equations. 

3.3. Resolution of the homogeneous systems 

When all the homogeneous equations corresponding 
to the studied generator are obtained from the first 
program, it is possible by simple examination to group 
them into systems as can be shown by the example 
given in § 3.1 or by the extract given in Fig. 2. They are 
homogeneous systems of n equations in m unknowns 
(generally n = m). 

The problem is to calculate the rank of these systems 
and to obtain the dependence relations between 

C 1 1 1 1  ! C 1112 I 
• 21 .2501  * C 1111 1 .0000  * C 1111 

1 . 0 0 0 0  * C 1112 " 7 6 . 0 0 0 6  * C 1112 
• 1o1567  C 1116 - ~ , 2 ~ 7 6  C 1116  

6 , 5 0 0 0  * C 1122 ~ 0 , 0 0 0 1  • C 11~2 
• 1 0 , 3 ~ 2 3  • C 1126 - 5 5 , ~ 5 8  • C 1126 

6*0000 * C 1166 16,OOOl * C 1166  
goO000 * C 12~2 2 6 , 0 0 0 ~  C 1~22 

• 3 1 , 1 7 7 0  * C 1 2 ~ 6  * 8 3 8 1 3 8 ~  * C 1 2 2 6  
3 6 , 0 0 0 1  • C 1266 6 8 , 0 0 0 3  * C 1266 

" 1 3 0 8 ~ 6 6  * C 1 6 6 6  *o0001 • C 1 6 6 6  
- , ~ O O  C ~ 2 ~  g , O 0 0 0  * C 2 ~ 2  

• ~ 1 , 1 7 7 1  C ~226  *0001  • C 2226  
6 6 o 0 0 0 3  • C 2266  , 7 2 , 0 0 0 6  * C 2266  

• 6 1 . 5 6 5 3  * C ~ 6 6 6  1 1 0 . 8 ~ 1 6  * C 2 6 6 6  
1 2 * 0 0 0 0  * C 6 6 6 6  e 6 8 0 0 0 0 1  * C 6 6 6 6  

*0  oO 

C 1116 I ¢ 1 1 1 '  : 
1o0000  * C 1111 
8 * 0 0 0 0  * C 1112 

• 1 5 1 , 3 " 5 7  * 1116 
1 8 . 0 0 0 1  • 1 1 2 2  

• 6 2 , 3 5 6 1  * C 11a6 
6 8 * 0 0 0 Z  • C 1166 

.0001 • 1 ~ 2  
• 6 2 * 3 5 6 4  ~ 1226 
1 6 6 o 0 0 Q i  * C 1~66 
• 8 3 o 1 3 8 8  • C 1 6 6 6  
• ~ 7 1 0 0 0 2  • ~ 2 2 2 2  

6 ~ . 3 5 6 1  * ~ ~ 2 2 6  
0 0 0 0 3  • ~ 2 Z 6 6  

• 0 3 , 1 3 9 2  * ~ 2 6 6 6  
4 8 0 0 0 0 3  * ¢ 6 6 6 6  

oO 
• • • * o e o * * • * * • . o e o o e o e • . • • . • • . • • . . . • • , .  
C 1115 I 

l ,OOOO * 1114 
e 7 ~ ' ~ 7 8 6  ~ 1115 

goOOOO 1124 
05.156Z ~ 11~5 

01003$23 * C 1166 
6o0000  * C 1156 

27 .0001  1226 
• 1 5 , 5 | 8 5  ~ 1225 
• 62o3560 * C 1~66 

36 .0001  * C 1256 
~ 6 , 0 0 0 1  * 1"66  

• 2 0 * 7 8 6 6  ~ 1 5 6 6  
2 7 , 0 0 0 ~  * C 2226 

" 1 5 . ~ 8 8 5  * C 2225 
• 1 3 . 5 3 1 3  22*6  
56.0002 ~ 2256 

108 ,0006  * C ~666 
• 6 2 . 3 5 4 0  * C 2566 
• 6 1 * 5 6 ~  * C ~666 

76 .6786  * C 1116 
1 . 0 0 0 0  * C 1115 
5o1162  C 1124 
g , O 0 0 0  * 

o 6 , 0 0 0 0  ~ 11661125 
• 1 0 , 3 9 ~ 3  * C 1156 

1 5 , 5 8 1 5  1226 
~ 7 . 0 0 0 1  ~ 1225  

• ~ 6 , 0 0 0 1  * C ~2~6 
" 6 a * 3 5 4 0  • C 1256 

~ 0 * 7 8 6 6  ~ 1666 
3600001 1566 
15 ,5885  * C 2226 
2 7 , 0 0 0 2  C 2225 

• 5 6 . 0 0 0 2  C 2266 
• $3o5313 * C 2 2 5 6  

6 2 . 3 5 6 0  • C 2 6 6 6  
108 .0005  * C 2566 
e~600001  * C 6666  
• 6 1 e 5 0 5 6  * C 5 6 6 6  0 

C 1166 I 
1 , 0 0 0 0  * 1111 
4*0000  ~ I I 1 2  

• $ . 2376  C 1116 
- 2 , 0 0 0 0  * ~ 1122 

• 1 8 , 6 7 5 3  • C 1126 
" ~ 6 ' 0 0 0 6  * C 1 1 6 6  
• 12*0001 • C 1222 

27o7129 e C 1226 
16 ,0002  • C 1266 

• 3 6 ' ~ 5 0 6  • C 1666 
9o0000  * C 2222 
• COCl * C 2226 

• 26,0001 C 2266 
*o0001 * C 2666  

26 .0001  • C 5 6 6 6  eO 16'00C1 ~ 6 6 6 6  
e*  

* • • * • • * • • e e * o e o o o o e s * o o e o o e J e e e o o e o o e o ' • o o * o • * e o • o o * e e . o e e e o o • e . o e o o e e o . • * * * •  
11J6 ! C 1156 ! 

1 .0000  * C 1113 - 1 . 7 3 2 1  • C 1114 
5 . 0 0 0 0  • ~ 1123 1 t0000  C 1115 

• , 5 . 0 3 3 5  1136 " 8 . 6 6 0 3  C 1126 
3 , 0 0 0 0  ~ 1223 

• 2 0 . 7 8 4 7  • 1236 6 .0000  • 1125 
2o,oooi ~ I,.oooo ~ 11~6 

1366 i 6~ .8183  • 1156 
" 9 . 0 0 0 0  2223 - 5 . 1 9 6 2  1226 
10 .3923  ~ 2236 3 .0000  1225 
12 .0001 • C 2366 36 .0002  * C 1266 

" 1 3 . 8 5 6 5  * C 3666 " 2 0 ' 7 8 6 7  * C 1256 
sO e 3 6 , 6 6 1 1  1 4 6 6  o e e o • . .  C 

C 1 1 5 ' ' 1  * • * * * * * • • * * * * * * * * * * * * • * • * * • * * *  20 .0001  * C 1 5 6 6  
1 5 o 5 8 8 5  * C 2226 

1 * 0 0 0 0  * ~ 116 ,  " 9 . 0 0 0 0  * C 2225 
" 1 . 1 5 6 7  11 ,5  - 1 8 . 0 0 0 0  • C 2246 

• ~1*0001 C 1155 10 .3923  * C 2256 
6 , 0 0 0 0  • ~ 12~6 - 2 0 . 7 8 , 8  * C 2466 

- 6 , ~ 2 8 2  1245 12 .0001  • ~ ~ 5 6 6  
~ , 0 0 0 0  * C 1255 2 6 , 0 0 0 2  C ' 6 6 6  

- 6 o 9 2 | 2  C 1466 " 1 3 * 8 5 6 ~  * C 5666  
8 , 0 0 0 0  * C 1456 

-203096 * C 1556 eO 
9 . 0 0 0 0  • C 2246 ~ ' ; ; ; ~ ' ;  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

• 10 .3923  C 2245 - 7 , 0 0 0 0  • C 1113 
3 , 0 0 0 0  * C 2255 1 .0000  * C 1123 

- 2 0 , 7 8 ~ 7  * C 2 * * 6  - 1 . 1 B 4 7  * 1 1 3 6  
2 6 ' 0 0 0 1  * ~ 1223 - 6 . . .  ~ ~;8~ ~.oooo 

• 6 * g ~ 8 2  * C 1~36 
12 .0000  * , 4 6 6  6 .0000  * C • 1,.,,, ~ 6,, ~.oooo. ~. 

6 , 0 0 0 0  * C 5 5 6 6  * 1 0 . 3 9 2 3  ~ 2 2 3 6  
• * oO 1 2 , 0 0 0 0  * C 2316 

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  " 4 . 6 1 8 8  * C 3 6 6 6  
oO * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Fig. 2. Facsimile showing the form under which the homogeneous 
equations are obtained. 
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coefficients. One obtains at the same time the zero and 
independent coefficients. 

Although program libraries probably include 
algorithms able to solve this problem, the particular 
form of the systems to be reduced makes the work 
simpler so that the program has been conceived in 
Basic language and used with a desk-top computer. The 
simplification comes from the au's which can always be 
reduced to integers or integers multiplied by V/3, what- 
ever the generator is. This fact is easy to understand by 
examining the matrices of the possible generators, the 
elements of which are always rational or rational 
numbers multiplied by V/3 as shown by Birss (1963). 

Enter factors a,h 
n the matrix , 4 /  

1 
Exchange colums of A to put the independent J 
coefficients chosen at the front I 

I 
Multiply lines of A to obtain only integer ] 
factor 1 

I 
Let P the relerence line. P ~ ary from l i o n  

I 
~- Let Q the last non zero term of the line P 

~ no 

07 

column Fetch in the same column a term different 
toward the from zero 

left 

no 

j yes 

Exchange the corresp~)nding line with line P 

l 
Make a hnear combination of hne P 'Aith | [ I 
each following line to cancel all the ele p" 
ments of the column Q ;flier the hne P 

I 
I)ividc these lines by 2, 3 .5 .7  . . to keep [ 

i 

numix'rs prime between them I ~ no 

Scan the triangular matrix beginning with the ] ~ 
last line and the last column j - 

I 
Fetch the last non.zero term of the scanned I 
line I 

I 
Divide all the other terms o f  tile scanned J 
ine b~ this number I 

I 
Replace the obtained relation in all the pre. [ 

I 

ceding lines I 
I 

I 

Write the indices of the nonzero term [ 
m 

y e s ~  _ = ,n~y n ........ term "-~ 
T i i ? 

coefficient is 1 null Express this coefficient as a function of the 
preceding independent coefficients 

Fig. 3. Flow chart of the program used to obtain dependence 
relations between coefficients. 

Fig. 3 shows the flow chart of the program used. The 
matrix of the coefficient factors is set in triangular form 
by expressing one of the coefficients as a function of all 
the others and carrying the relation obtained over the 
n -  1 remaining equations and so on. Eventually one 
obtains k relations between the n coefficients (k < n). 
Some equations give zero coefficients, others express 
dependent coefficients as functions of independent 
coefficients. The arbitrary choice of these independent 
coefficients was made by taking into account the degree 
of symmetry between subscripts; that is, in order of 
preference the coefficients are taken as  CIII I  , CIIJJ  , CIIIJ  , 
CmK, Cljr~. For equal symmetry, the lower numerical 
value is chosen. Use of another choice is, of course, a 
matter of personal preference and the modification 
presents no difficulty. 

3.4. Remark 
For groups having several generators, results are 

obtained by means of the resolution program, systems 
corresponding to the different generators being con- 
sidered simultaneously. The isotropic case is treated by 
applying the resolution program to all generators of the 
Laue groups and then using all the resulting depen- 
dence relations simultaneously. 

4 .  R e s u l t s  a n d  v e r i f i c a t i o n s  

The coefficients obtained by this method are given 
according to the notations and definitions of Brugger 
(1965). The two programs have been checked on the 
second- and third-order elastic coefficients for all the 
Laue groups as well as the second- and third-order 
piezoelectric coefficients for the point group 32. One 
obtains, in this way, the classical results compiled by 
Thurston (1974) and Bechmann & Hearmon (1969). 
By changing the choice of the independent coefficients, 
the fourth-order elastic coefficients given by Markens- 
coff (1976) for the Laue group RI were checked.t The 
fourth-order elastic coefficients for group C 1 given by 
Krishnamurty (1963) are correct but the relations he 
obtains manually for the isotropic case, although using 
the proper coefficients, are erroneous. 

The number of independent coefficients obtained for 
each Laue group corresponds to that calculated by 
group theory and given by Krishnamurty (1963) and 
Krishnamurty & Gopalakrishnamurty (1968). 

Table 3 summarizes the results obtained for the 
eleven Laue groups and the isotropic case. Only the 
subscripts are specified. The asterisk (.) indicates an 
independent coefficient and the numbers in brackets 
refer to the footnotes. 

t Except for an error of sign in the coefficient C1122. 
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Table 3. Independent fourth-order elastic coefficients for the 32 crystal classes 

M 
N X Y Z O T I I  T I  R I I  RI  H I I  H I  C I I  CI  I 

1111 * * * * * * * * * * * * * 
1112 * * * * * * ( 1 )  ( 1 )  ( 1 )  ( 1 )  * * ( 5 7 )  
1113 • • • • • * * * * * * 1112 1112 

1114 * 0 0 0 0 0 * * 0 0 0 0 0 
1115 0 * 0 0 0 0 * 0 0 0 0 0 0 
1116 0 0 * 0 * 0 * 0 * 0 0 0 0 

1122 * * * * * * * * * * * * * 
1123 • • • • • * * * * * * * (58) 
1124 * 0 0 0 0 0 (2) (2) 0 0 0 0 0 
1125 0 * 0 0 0 0 (3) 0 0 0 0 0 0 
1126 0 0 * 0 * 0 (4) 0 (4) 0 0 0 0 
1133 • • • * * * * * * * 1122 1122 1122 

1134 * 0 0 0 0 0 * * 0 0 0 0 0 
1135 0 * 0 0 0 0 * 0 0 0 0 0 0 
1136 0 0 * 0 * 0 - 3 6 6 6  0 - 3 6 6 6  0 0 0 0 

1 1 4 4  * * * * * * * * * * * * * 
1 1 4 5  0 0 * 0 * 0 * 0 * 0 0 0 0 

1 1 4 6  0 * 0 0 0 0 ( 5 )  0 0 0 0 0 0 

1 1 5 5  * * * * * * * * * * * * ( 5 9 )  

1 1 5 6  * 0 0 0 0 0 ( 6 )  ( 6 )  0 0 0 0 0 
1166 * * * * * * (7) (7) (7) (7) * 1155 1155 

1222 * * * * 1112 1112 (8) (8) (8) (8) 1113 1112 1112 
1223 * * * * 1123 1123 (9) (9) (9) (9) 1123 1123 1123 
1224 * 0 0 0 0 0 (10) (10) 0 0 0 0 0 
1225 0 * 0 0 0 0 (11) 0 0 0 0 0 0 
1226 0 0 * 0 - 1 1 2 6  0 (12) 0 (12) 0 0 0 0 
1233 * * * * * * (13) (13) (13) (13) 1123 1123 1 1 2 3  
1234 * 0 0 0 0 0 (14) (14) 0 0 0 0 0 
1235 0 * 0 0 0 0 (15) 0 0 0 0 0 0 
1236 0 0 * 0 0 0 3666  0 3666 0 0 0 0 
1244 * * * * * * (16) (16) (16) (16) * * - ( 6 0 )  
1245 0 0 * 0 0 0 (17) 0 (17) 0 0 0 0 
1246 0 * 0 0 0 0 (18) 0 0 0 0 0 0 
1255 * * * * 1244 1244 (19) (19) (19) (19) * 1244 1244 
1256 * 0 0 0 0 0 (20) (20) 0 0 0 0 0 
1266 * * * * * * (21) (21) (21) (21) * * (61) 

1333 * * * * * * * * * * 1112 1112 1112 
1334 * 0 0 0 0 0 * * 0 0 0 0 0 
1335 0 * 0 0 0 0 * 0 0 0 0 0 0 
1336 0 0 * 0 * 0 0 0 0 0 0 0 0 
1344 * * * * * * * * * * 1255 1244 1244 
1345 0 0 * 0 * 0 3446  0 3446 0 0 0 0 
1346 0 * 0 0 0 0 (22) 0 0 0 0 0 0 
1355 * * * * * * * * * * 1266 1266 1266 
1356 * 0 0 0 0 0 (23) (23) 0 0 0 0 0 
1366 * * * * * * (24) (24) (24) (24) 1244 1244 1244 

(1) C, , , z  = - ~C,,,1 + 1]C,22, - 2C6666 + tC1122 • 
( 2 )  C1124 = - ] C m ~  - }C~666- 
(3)  C1125 = - -  ~C2225 4- ]C4666. 
(4) Cil26 = - -  ~Ci116, 
(5)  C1146 = ~C1115 -]- ½C2225. 
(6)  C1156 -~ - ~C1114 - -  ½C2224. 
(7)  C1166 ~--- - -  1~C1111 -t- t~C2222 4- ~C6666 - ~C1122. 

(8) C , , , ,  = ] C , , , ,  - t ~ 2 2 2 2 -  2C6666 + ~C,,2," 
(9) C1223 = Ci113 - -  C l 2 l ]  + C1123. 
(10) Cl22, -- - -  ~C1114 4- ~C5666. 
(1 1) Ciz2s = - -  ~ C 1 1 1 5  - -  ~ C 4 6 6 6 ,  
(12) C u z  6 = - } C l n  6. 
(13) C m 3  = C m 3  - 2C3366. 
(14) C m 4  = - ½Cm4 - ½C2234. 
( 1 5 )  C1135 = - -  ½C1135 - -  ½C2235. 

(16) C1244 = ½CI144 + 2C115~ - ~rC2244 - 2C4466 
(17) C,2,5 = - }C,145 + } C , ,  6. 
( 1 8 )  c , 2 .  = - k c , , , ,  + ~ c 2 ~ ,  - } c , . , .  

(19) Clz55 = ½C1144 + Clls5 -- ~722 ,  -- 2C4466. 
(20) C,z,6 = ~C1114 - k C l l l 4  - -  ~C5666, 
(21) C,266 = ~C1111 + - ~ C z m  - •C6666 - ~ C l m .  

(22) C,3,6 = tci135 + tC2235 
(23) Ci3s6 1 ~tCm,. = - ~Ci134  - 

( 2 4 )  C,3 ~ = - ½Cl113 + } C , m  - } C , m .  
(57) C, , , z  = tCl11, - 2 C , , , ,  + ~C11,,. 
(58) C l m  = C m 2  - 2C11 , .  

( 5 9 )  C115, = ~C1111 + ~C4444 - -  ~C1122° 
( 6 0 )  C1244 = ]~C1111 - ½C4444 - -  .]~C1122 + ½C1144, 
(61) Ci,66 = ~Ci111 - ] C , , ,  - ~ C l m .  



M 
N X Y Z O 

1444 * 0 0 0 
1445 0 * 0 0 
1446 0 0 * 0 
1455 * 0 0 0 
1456 * * * * 
1466 * 0 0 0 

1555 0 * 0 0 
1556 0 0 * 0 
1566 0 * 0 0 

1666 0 0 * 0 

2222 * * * * 
2223 * * * * 
2224 * 0 0 0 
2225 0 * 0 0 
2226 0 0 * 0 
2233 * * * * 
2234 * 0 0 0 
2235 0 * 0 0 
2236 0 0 * 0 
2244 * * * * 
2245 0 0 * 0 
2246 0 * 0 0 
2255 * * * * 
2256 * 0 0 0 
2266 * * * * 

2333 * * * * 
2334 * 0 0 0 
2335 0 * 0 0 
2336 0 0 * 0 
2344 * * * * 
2345 0 0 * 0 
2346 0 * 0 0 
2355 * * * * 
2356 * 0 0 0 
2366 * * * * 

2444 * 0 0 0 
2445 0 * 0 0 
2446 0 0 * 0 
2455 * 0 0 0 
2456 * * * * 
2466 * 0 0 0 

2555 0 * 0 0 
2556 0 0 * 0 
2566 0 * 0 0 

2666 0 0 * 0 

R E M I  B R E N D E L  

T a b l e  3 (cont.) 

TII  TI  RII  

0 0 * 
0 0 (25) 
• 0 * 
0 0 (26) 
• * ( 2 7 )  

0 0 (28) 

0 0 * 
• 0 - 1 4 4 6  
0 0 (29) 

• 0 ( 3 0 )  

1111 1111 * 

1113 1113 * 
0 0 * 
0 0 * 

- 1 1 1 6  0 1116 
1133 1133 1133 

0 0 * 
0 0 * 

- 1 1 3 6  0 - 3 6 6 6  
1155 1155 * 

--1145 0 (31) 
0 0 (32) 

1144 1144 (33) 
0 0 (34) 

1166 1166 (35) 

1333 1333 1333 
0 0 - 1 3 3 4  
0 0 - 1 3 3 5  

--1336 0 0 
1355 1355 1355 

- 1345 0 --3446 
0 0 (36) 

1344 1344 1344 
0 0 (37) 

1366 1366 (38) 

0 0 * 
0 0 (39) 

--1556 0 (40) 
0 0 (41) 

1456 1456 (42) 
0 0 (43) 

0 0 * 
--1446 0 (44) 

0 0 (45) 

--1666 0 (46) 

5 3 1  

RI HI I  H I  CII CI I 

* 0 0 0 0 0 

0 0 0 0 0 0 
0 * 0 0 0 0 

(26) 0 0 0 0 0 
( 2 7 )  ( 2 7 )  ( 2 7 )  * * (62) 
( 2 8 )  o o o o o 

0 0 0 0 0 0 
0 - 1 4 4 6  0 0 0 0 
0 0 0 0 0 0 

0 (30) 0 0 0 0 

* * * 1111 1111 1111 
* * * 1112 1112 1112 
* 0 0 0 0 0 
0 0 0 0 0 0 
0 1116 0 0 0 0 

1133 1133 1133 1122 1122 1122 
* 0 0 0 0 0 
0 0 0 0 0 0 
0 --3666 0 0 0 0 
* * * 1166 1155 1155 
0 (31) 0 0 0 0 
0 0 0 0 0 0 

(33) (33) (33) 1144 1144 1144 
(34) 0 0 0 0 0 
(35) (35) (35) 1155 1155 1155 

1333 1333 1333 1113 1112 1112 
- 1 3 3 4  0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

1355 1355 1355 1266 1266 1266 
0 - 3 4 4 6  0 0 0 0 
0 0 0 0 0 0 

1344 1344 1344 1244 1244 1244 
(37) 0 0 0 0 0 
(38) (38) (38) 1255 1244 1244 

* 0 0 0 0 0 
0 0 0 0 0 0 
o ( 4 0 )  o o o o 

(41) 0 0 0 0 0 
(42) (42) (42) 1456 1456 1456 
(43) 0 0 0 0 0 

0 0 0 0 0 0 
0 (44) 0 0 0 0 
0 0 0 0 0 0 

0 (46) 0 0 0 0 

(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 

(36) 

C1445 : - -  ] C 1 5 5 5  - -  ~ ' 2 5 5 5 "  

C , 4 .  = - "}C14. - ~C2,~4. 
C,,~6 = - tC1,44 - ½ C . .  + ~C2~4,. 
C i 4 ~ t  • - -  ~ C i l l 4  - -  ~C2224  + }C5666. 
%,, = - ~ c , , , ,  - ~ c , , 2 ,  - ~ c , . , .  

c ,666 = - -~c ,116.  
C2245 ~" - -  t C i  145 - -  ~C1446" 
Or , ,6  = - ½ C . ~ s  - ~Cr,25.  

C2255 ~ C1144 "J- C1155 - -  C2244. 
C2256 = t C i 1 1 4  -t- tC2224. 
c, , , ,  = ~ c , . , , -  ~c,~,~ + ~c ,6 , , -  ~c,,2~. 
C23,6  = - ~ ]C l ,35  - i C t u s .  

1 
(37) C23s6 = I]C,34 + ~Cm4. 

-- ;[C2223 (38) C2366=½C1113 ' - t C m 3 .  
(39) C244~ = - ~Cm5 - ~C2,55. 
(40) C2446 = }C, , , ,  - }C,446. 

= - -  ~C]444 (41) C2455 2 - -  tC2444" 
( 4 2 )  C2,56 = - t C ~ , , ,  + ½C~m - t C 2 2 , .  

= -- ~;Clll, , -- ( 4 3 )  C2466 1 ~C2224  _ tC5666" 
= --  jCt t45  + ( 4 4 )  C2556 2 ~Cl446"  

(45) C2566 = - }C, , , ,  - ~Czzz, + ]C4666. 
(46) C2666 = - -  t C 1 1 1 6 .  

( 6 2 )  C~456 = . ~ C , ~ t ~ +  ~ C 4 4  . - ~ C ~ 2 2  - tC~t44. 
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Table 3 (cont.) 

M 

N X Y Z O T I I  T I  R I I  RI  H I I  H I  C I I  CI  I 

3333 * * * * * * * * * * 1111 1111 1111 

3334  * 0 0 0 0 0 0 0 0 0 0 0 0 
3335 0 * 0 0 0 0 0 0 0 0 0 0 0 
3336 0 0 * 0 0 0 0 0 0 0 0 0 0 
3344  * * * * * * * * * * 1155 1155 1155 

3345 0 0 * 0 0 0 0 0 0 0 0 0 0 
3346 0 * 0 0 0 0 - 1 3 3 5  0 0 0 0 0 0 
3355 * * * * 3344  3344  3344  3344  3344 3344 1166 1155 1155 
3356 * 0 0 0 0 0 1334 1334 0 0 0 0 0 
3366 * * * * * * * * * * 1144 1144 1144 

3444  * 0 0 0 0 0 * * 0 0 0 0 0 
3445 0 * 0 0 0 0 - - 3 5 5 5  0 0 0 0 0 0 
3446 0 0 * 0 * 0 * 0 * 0 0 0 0 
3455 * 0 0 0 0 0 - 3 4 4 4  - 3 4 4 4  0 0 0 0 0 
3456 * * * * * * (47)  (47)  (47)  (47)  1456 1456 1456 

3466  * 0 0 0 0 0 (48)  (48)  0 0 0 0 0 

3555 0 * 0 0 0 0 * 0 0 0 0 0 0 
3556 0 0 * 0 - 3 4 4 6  0 - - 3 4 4 6  0 - - 3 4 4 6  0 0 0 0 
3566 0 * 0 0 0 0 (49)  0 0 0 0 0 0 

3666 0 0 * 0 0 0 * 0 * 0 0 0 0 

4444  * * * * * * * * * * * * * 
4445  0 0 * 0 * 0 0 0 0 0 0 0 0 
4446  0 * 0 0 0 0 (50)  0 0 0 0 0 0 
4455 * * * * * * (51)  (51)  (51)  (51)  * * (51)  
4456  * 0 0 0 0 0 (52)  (52)  0 0 0 0 0 
4466  * * * * * * * * * * 4455  4455  4455  

4555  0 0 * 0 - 4 4 4 5  0 0 0 0 0 0 0 0 
4556  0 * 0 0 0 0 (53)  0 0 0 0 0 0 
4566  0 0 * 0 0 0 (54)  0 (54)  0 0 0 0 

4666  0 * 0 0 0 0 * 0 0 0 0 0 0 

5555 * * * * 4444  4444  4444  4444  4444  4444  4444  4444  4444  
5556 * 0 0 0 0 0 (55)  (55)  0 0 0 0 0 
5566  * * * * 4466  4466  (56)  (56)  (56)  (56)  4455  4455  4455  

5666 * 0 0 0 0 0 * * 0 0 0 0 0 

6666  * * * * * * * * * * 4444  4444  4 4 4 4  

(47)  C3456 = - ~Ci344 + iC1355. 
(48)  C3466 z - ½Ci134 - ½C2234 , 
(49)  C3566 = - ½C1135 - ½C2235. 

(50)  C . 4 6  = - ½C,5s5 + ½C2555. 
(5 1) C4455 = ]C4444. 

(52) Cus6 = ]~C14441 _ ~ C 2 4 4 4 "  

(53) c , . ,  = - ~ c , , ,  + ~c2~.  
2 

(54) C4s66 = - ' ~ C i 1 4 5  -]- ~ C 1 4 4 6 .  

(55) c , , , ,  = ½c,,,4 - ½c2.,. 
(56)  Cs~66 = - C ~ .  5 + C2244 + C4466. 

Except for the monoclinic system, where three 
orientations have been studied, the reference is always 
the z axis, as shown in column (d) of Table 1. 

5. Conclusion 

The program used for the fourth-order elastic 
coefficients can be adapted without difficulty to the 
calculation of coefficients of all kinds and all orders 
(permittivity, piezoelectricity, etc.), as long as they are 

components of a tensor for which equation (1) holds. In 
practice, the time of calculation is an exponential 
function of the rank of the tensor, thus a practical 
upper limit is reached for tenth-rank tensors. 

There is no difficulty in applying the program to the 
calculation of the relations between coefficients for any 
rotation for which the matrix is known. 

The author wishes to thank Dr J.-J. Gagnepain for 
his interest and support and Dr B. A. Auld for revising 
this manuscript. 
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Magnetic Structure of PrCo2Ge 2, a Neutron Diffraction Study 
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Abstract II. Experimental 

The crystallographic structure of the compound 
PrCo2Ge 2 is of the BaAI 4 type. The space group is 
I4/mmm and the lattice constants are a = 4.048 and 
c = 10.178 /k. A neutron diffraction study revealed a 
transition to a magnetically ordered state at T N ~ 27 K 
and six superlattice lines below T N. It is possible to 
index these lines according to a sinusoidal magnetic 
structure with a period r --t = 13.94 /~ along c. 
Observed intensities are consistent with ordering of the 
Pr sublattice with the magnetic axis along c. 

I. Introduction 

The compound PrC ozGe2 belongs (McC all, 
Naras imhan & Butera, 1973a) to the series of 
compounds AB2X 2 (A = U, Th, rare-earth; B = Mn, 
Fe, Co; X = Si, Ge). These compounds crystallize with 
the BaAl4-type structure, which belongs to the tetra- 
gonal space group 14/mmm (DI~. The lattice con- 
stants of PrCo2Ge 2 as determined by X-rays (McCall 
et al., 1973a) are a = 4.048 and c = 10 .178/k .  Mag- 
netic-susceptibility measurements (McCall, Narasirnhan 
& Butera, 1973b) exhibit a peak at 28 K with the 
susceptibility rising with decreasing temperature down 
to 4.2 K. It was suggested that this behaviour is due to 
the antiferromagnetic ordering of the Pr ion. In the 
present paper we report the results of a neutron 
diffraction study of a powder sample of PrCo2Ge2, 
undertaken in order to deternfine the magnetic struc- 
ture of this compound. 

0567-7394/79/040533-04501.00 

The powder sample was synthesized by arc melting 
under an atmosphere of argon gas. Neutron diffraction 
patterns were taken at room temperature (RT) and 
liquid-helium temperature (LT). The RT and LT 
patterns are shown in Fig. 1. All the reflections 
observed in the RT pattern are in agreement with the 
reported lattice constants (McCall et al., 1973a). Six 
superlattice lines are observed in the LT pattern. The 
remaining lines can be indexed according to the unit cell 
with lattice constants a = b = 4.037 and c = 10.173 A. 
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Fig .  l .  N e u t r o n  (~, = 2 . 4 5  /k)  d i f f r a c t i o n  p a t t e r n s  o f  P r C o z G e  2 a t  

(a) RT and (b) LT. No reflection was observed in the range 5 o < 
20 < 33 ° (not shown). The subscripts S in the LT pattern are for 
superlattice lines. The RT and the LT patterns were indexed 
according to a = 4.048, c = 10.178 /~ and a' = 4.037, c' = 
10.1"73/~ and r-! = 13.94/~ respectively. 
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